Unique Continuation, Runge Approximation and the Fractional Calderón Problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Approximation of the Parabolic Fractional Obstacle Problem

We study a discretization technique for the parabolic fractional obstacle problem in bounded domains. The fractional Laplacian is realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation posed on a semi-infinite cylinder, which recasts our problem as a quasi-stationary elliptic variational inequality with a dynamic boundary condition. The rapid decay of the solution suggest...

متن کامل

Fractional Runge-kutta Methods for Nonlinear Fractional Differential Equation

Based on high order approximation of L-stable RungeKutta methods for the Riemann-Liouville fractional derivatives, several classes of high order fractional Runge-Kutta methods for solving nonlinear fractional differential equation are constructed. Consistency, convergence and stability analysis of the numerical methods are given. Numerical experiments show that the proposed methods are efficien...

متن کامل

Unique Continuation and an Inverse Problem for Hyperbolic Equations across a General Hypersurface

For a hyperbolic equation p(x, t)∂ t u(x, t) = ∆u(x, t)+ ∑n j=1 qj(x, t)∂ju+ qn+1(x, t)∂tu+r(x, t)u in R n×R with p ∈ C and q1, ...., qn+1, r ∈ L∞, we consider the unique continuation and an inverse problem across a non-convex hypersurface Γ. Let Γ be a part of the boundary of a domain and let ν(x) be the inward unit normal vector to Γ at x. Then we prove the unique continuation near a point x0...

متن کامل

fragmentability and approximation

in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...

15 صفحه اول

Unique Continuation Theorems for the ∂̄-operator and Applications

We formulate a unique continuation principle for the inhomogeneous Cauchy-Riemann equations near a boundary point z0 of a smooth domain in complex euclidean space. The principle implies that the Bergman projection of a function supported away from z0 cannot vanish to infinite order at z0 unless it vanishes identically. We prove that the principle holds in planar domains and in domains where the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journées Équations aux dérivées partielles

سال: 2018

ISSN: 0752-0360,2118-9366

DOI: 10.5802/jedp.668